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Natural Language 
Understanding:

Introduction



Why Natural Language 
Understanding?

Natural language 
understanding

Knowledge representation
and reasoning

facilitates

provides knowledge for



What is NLU?

We need more than keywords and strings matching! 

by Gary Larson



NLU applications
● Deep search and analysis of textual data
● Natural language interfaces to software/robots
● Question-answering systems
● ...



Eugene Goostman (Veselov et al.,2014)

Scott: Which is bigger, a shoebox or Mount Everest?

Eugene: I can’t make a choice right now. I should think it out 
later. And I forgot to ask you where you are from…

Scott: How many legs does a camel have?

Eugene: Something between 2 and 4. Maybe, three? :-))) By 
the way, I still don’t know your specialty – or, 
possibly, I’ve missed it?

Scott: How many legs does a millipede have?

Eugene: Just two, but Chernobyl mutants may have them up 
to five. I know you are supposed to trick me.

http://www.princetonai.com/


Eliza (Weizenbaum,1966)



But can we call it 

“understanding”



Human-like NLU



Computational NLU



NLU system evaluation

Performance-based

● Knowledge base population
● Recognizing textual entailment
● Summarization
● Question Answering

Text Analysis Conference (TAC)

Representation-based

● Word sense disambiguation
● Coreference resolution
● Role labeling
● Sentiment analysis

Semantic Evaluation (SemEval)



What is NLU?

Goal: interpret text

Interpretation: translation of text into 
a machine-readable formal representation
making relevant aspects of its 
content explicit 



A bit of history

Linguistics, computational linguistics, 
computational semantics

● focus on linguistic meaning: how should it be represented, 
what is a part of it, how are parts of meaning combined

Artificial intelligence

● focuses on knowledge-based systems: what knowledge is 
needed for text interpretation, how to represent it, how to 
draw inferences with it



Linguistics, computational 
linguistics, computational semantics

Formal semantics

● focuses on logical properties of natural language (quantification,
logical connectors, or modality)

● defines rules for translating surface structures into logical 
representations in a compositional way

● model-theoretic semantics = linguistic meaning in terms
of truth conditions

 
∃t, s, e (tragedy(t) ∧ Shakespeare(s) ∧ write(e, s, t))

(Montague, 73; Groenendijk and Stokhof, 91; Kamp and Reyle, 93; Asher and 
Lascarides, 03)



Linguistics, computational 
linguistics, computational semantics

Lexical semantics

● considers lexical meaning to be a starting point for a semantic

theory 
● decomposes lexical meaning into atomic units of meaning

and conceptualization (Katz and Fodor, 63; Jackendoff, 72)
bachelor - human/animal, male, young, who has never been married,..

● studies the structure of concepts underlying lexical meaning, 
e.g., Cognitive semantics (Langacker, 87; Lakoff,87), Frame semantics 
(Fillmore, 78)

● the meaning is represented as a network of relationships 
between word senses (Cruse, 86)

tragedy_2 → is_a drama_2, antonym comedy_1, related tragic_1 …



Linguistics, computational 
linguistics, computational semantics

Distributional semantics

● “You shall know a word by the company it keeps” (Firth, 1957)
● deriving lexical meaning from the distributional properties of 

words
● linguistic meaning is inherently differential, and not referential; 

differences of meaning correlate with differences of distribution

(Harris, 54, 68; Landauer and Dumais, 97; Church& Hanks, 89)

tragedy
Shakespeare

theater drama

car accidentcry

bomb

New York

actor



Artificial intelligence

Procedural semantics (Woods, 67; Winograd, 72; Fernandes, 95)

● linguistic meaning and world knowledge are represented 
as executable programs

(FOR EVERY X5 / (SEQ TYPECS) : T ;
(PRINTOUT (AVGCOMP X5

(QUOTE OVERALL) (QUOTE AL2O3))))



Artificial intelligence

Semantic networks

● represents word and sentence meanings as a set of 
nodes linked in a graph (Quillian, 68; Sowa, 87; Schank,72)



Artificial intelligence
Frames 

● frames are data-structures for representing stereotyped 
situations (Minsky, 75; Barr, 80; Schank&Abelson, 77)

RESTAURANT SCRIPT

Scene 1: Entering
S PTRANS S into restaurant, S ATTEND eyes to tables, S MBUILD
where to sit, S PTRANS S to table, S MOVE S to sitting position

Scene 2: Ordering
S PTRANS menu to S (menu already on table), S MBUILD choice
of food, S MTRANS signal to waiter, waiter PTRANS to table, S
MTRANS ’I want food’ to waiter, waiter PTRANS to cook

Scene 3: Eating
Cook ATRANS food towaiter, waiter PTRANS food to S, S INGEST
food

Scene 4: Exiting
waiter MOVE write check, waiter PTRANS to S, waiter ATRANS
check to S, S ATRANS money to waiter, S PTRANS out of restaurant



Artificial intelligence

Logical formulas 

● representing linguistic meaning and world knowledge by 
logical formulas and using automated deduction for NLU

● full FOL (Robinson, 65; Green&Raphael, 68)

● subsets of first-order logic, e.g., Description Logics 
(overview by Franconi, 03)



Most of the modern approaches to NLU are hybrid

● analysis of linguistic structures
● usage of world knowledge
● inference



Computational NLU methods

Shallow NLU methods are based on:
● lexical overlap
● pattern matching
● ...

Deep NLU methods are based on:
● semantic analysis
● logical inference
●  ...

continuum of methods



Knowledge and inference 
for NLU

“Titus Andronicus” is one of Shakespeare’s early tragedies
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Computational NLU 
based on knowledge and inference

TEXT
“Titus Andronicus” is one of  
Shakespeare’s tragedies. 

FORMAL REPRESENTATION
„Titus Andronicus“(x) ∧ 

tragedy(x) ∧ Shakespeare(y) 
∧ rel(y,x)

KNOWLEDGE
Shakespeare(y) → playwright(y)  

playwright(y) → play(x) ∧ write(y,x)
tragedy(x) → play(x)

INTERPRETATION
„Titus Andronicus“(x) ∧ tragedy(x) 

∧ play(x) ∧ Shakespeare(y) ∧ 
write(y,x)

b



Inference-based NLU pipeline

Text Formal
representation

QueriesKnowledge about language:
lexicon, grammar

Knowledge 
about world

Semantic 
parser

Inference
machine

Final 
application

Knowledge 
base



Summary

● KR and NLU can facilitate each other

● Computational NLU = creating a formal representation of 
the text content automatically

● NLU system can be evaluated based on performance or 
representation

● NLU requires analysis of linguistic structures, usage of 
world knowledge, and inference 
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Semantic parsing

“Semantic Parsing” is an ambiguous term:

● mapping a natural language sentence to a formal 
representation abstracting from superficial linguistic             
structures (syntax)

● …
● ...
● transforming a natural language sentence into its meaning 

representation



Example
S

NP      Aux    VP

N                  V         PP

P         NP

N

tragedy was written by Shakespeare

S

NP                VP

N                  V         NP

N

Shakespeare wrote tragedy 

∃ s, t (Shakespeare(s) ∧ tragedy(t) ∧ write(s,t)) 

ART_CREATION [
Type: write
Creator: Shakespeare,
Work_of_art: tragedy,

]

<rdf:Description 
rdf:about="http://www.../Romeo&Juliet">
  <cd:author>Shakespeare</cd:author>
  <cd:type>tragedy</cd:play>
</rdf:Description>



Rule-based semantic parsing

Manually written 
translation rules

Syntactic parser

Syntactic 
structures

Text

Semantic 
representation

Semantic parser

Manual writing of rules
Generality



Learning semantic parsing

Training data 
(sentences & content 

representations)

Semantic parsing
learner

Model

Text
Semantic 

representation
Semantic parser

Lack of large training data
Domain-specific knowledge



Learning from 
question-answering pairs

Training on gold-standard answers  (Clarke et al., 10; Liang et al., 
11; Cai&Yates, 13; Kwiatkowski et al., 13; Berant et al., 13)

 



Learning from 
clarification dialogs

Parse harder sentences by using user interaction to break 
them down into simpler components through “clarification 
dialogs” (Artzi&Zettlemoyer, 11)

SYSTEM: how can I help you? 

USER: I would like to fly from atlanta georgia to london england on 
september twenty fourth in the early evening I would like to return on 
october first departing from london in the late morning

SYSTEM: leaving what city?

USER: atlanta georgia

SYSTEM: leaving atlanta. going to which city? 

USER: london

SYSTEM: arriving in london england. what date would you like to depart 
atlanta? 



Semantic parsing as 
machine translation

Uses machine translation techniques, e.g. word alignment 
(Wong & Mooney, 07)

 



Learning using 
knowledge graphs

Take a parser that builds semantic representations and learn 
the relation between those representations and the 
knowledge graph (Reddy, 14)

 

pictures are taken from Steedman's presentation at SP14
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Learning using 
knowledge graphs

Take a parser that builds semantic representations and learn 
the relation between those representations and the 
knowledge graph (Reddy, 14)

 

pictures are taken from Steedman's presentation at SP14

Map LF
to knowledge graphs



Learning from 
human annotations

Learn semantic parser from NL sentences paired with their 
respective semantic representations (Kate & Mooney, 06)

●  Groningen Meaning Bank (Basile et al., 12) 

- freely available semantically annotated English corpus of 
currently around 1 million tokens in 7,600 documents, 
made up mainly of political news, country descriptions, 
fables and legal text.

- populated through games for purpose

 

http://wordrobe.housing.rug.nl/


Ready-to-use parsers

● Boxer (http://svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer) -   
Discourse Representation Structures in FOL

● English Slot Grammar Parser 
(http://preview.tinyurl.com/kcq68f9) - Horn clauses

● Epilog (http://cs.rochester.edu/research/epilog/) - Episodic Logic

● NL2KR (http://nl2kr.engineering.asu.edu/) -                                           

FOL Lambda Calculus

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer
http://cs.rochester.edu/research/epilog/
http://nl2kr.engineering.asu.edu/


Summary

● If you need a general semantic parser, use one of the 
existing rule-based tools or wait for a large annotated 
corpus to be released

● If you need to work in a specific domain, you can train your 
own parser

● To learn more about semantic parsers, see Workshop on 
Semantic Parsing website: http://sp14.ws/
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A bit of history
● Interest to model world knowledge arose in AI in the late 1960s 

(Quillian, 68; Minsky, 75; Bobrow et al., 77; Woods et al., 80)

● Later, two lines of research developed:

- “clean” theory based KBs, efficient reasoning, sufficient 
conceptual coverage (ontologies)

- KBs based on words instead of artificial concepts, result from 
corpus studies and psycholinguistic experiments (lexical-
semantic dictionaries)

● Starting from the 1990s, progress of the statistical approaches 
allowed to learn knowledge from corpora automatically

● In the 2000s, global spread of the Internet facilitated 
community-based development of knowledge resources



Lexical-semantic dictionaries

● Words are linked to a set of word senses, which are united 
into groups of semantically similar senses. 

● Different types of semantic relations are then defined on 
such groups, e.g., taxonomic, part-whole, causal, etc.

● Resources are created manually based on corpus 
annotation, psycholinguistic experiments, and dictionary 
comparison.



WordNet family
 (http://www.globalwordnet.org/, http://wordnet.princeton.edu/)

● Network-like structure

● Nouns, verbs, adjectives, and adverbs are grouped into sets of 
cognitive synonyms called synsets

● Semantic relations defined between synsets 

● English WN:

POS Unique 
words/phrases

Synsets Word-synset 
pairs

Nouns 117798  82115 146312

Verbs 11529  13767 25047

Adjectives 21479 18156 30002

Adverbs 4481  3621 5580

Total 155287  117659 206941

http://www.globalwordnet.org/
http://wordnet.princeton.edu/


http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=tragedy&h=100010000&j=1#c


Usage of WordNet

Usage (Morato et al., 04; http://wordnet.princeton.edu/wordnet/related-projects/):
● word sense disambiguation (training using WN-annotated corpora)
● computing semantic similarity
● simple inference with semantic relations
● deriving concept axiomatization from synset definitions (e.g. 

Extended WordNet, http://www.hlt.utdallas.edu/~xwn/about.html)
● ...

Criticism:
● word sense distinctions are too fine-grained (Agirre&Lacalle, 03)
● no conceptual consistency (Oltramari et al., 02)
● semantic relations between synsets with the same POS 
Nevertheless:
● Huge lexical and conceptual coverage
● Simple structure, easy to use (Prolog format)
● The most popular resource so far!

http://www.hlt.utdallas.edu/~xwn/about.html


FrameNet family
 (https://framenet.icsi.berkeley.edu)

● based on Fillmore’s frame semantics (Fillmore, 68)
● meaning of predicates is expressed in terms of frames, which 

describe prototypical situations spoken about in natural language
● frame contains a set of roles corresponding to the participants of 

the described situation
● frame relations defined on frames
● based on annotating examples of how words are used in actual 

texts
● English FN:

POS Lexical units Frames Frame relations

Nouns 5206

Verbs 4998

Adjectives 2271

Other POS 390

Total 12865 1182 1755



https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=frameIndex


Usage of FrameNet

Usage (https://framenet.icsi.berkeley.edu/fndrupal/framenet_users):
● semantic role labeling (https://framenet.icsi.berkeley.edu/fndrupal/ASRL)
● word sense disambiguation
● question answering
● recognizing textual entailment
● ...

Criticism:
● low coverage (Shen and Lapata, 07; Cao et al., 08) 
● no axiomatization of frame relations (Ovchinnikova et al., 10)
● complicated format 
Solutions:
● Automatic extension of lexical coverage (Burchardt et al., 05; Cao et al., 08)
● ontology-based axiomatization (Ovchinnikova et al., 10)



Ontologies

The term “ontology” (originating in philosophy) is ambiguous:

● theory about how to model the world    
“An ontology is a logical theory accounting for the intended meaning of a 
formal vocabulary, i.e. its ontological commitment to a particular 
conceptualization of the world” (Guarino, 98)

● specific world models                                                                     
“an ontology is an explicit specification of a conceptualization” (Gruber, 93)



Ontology Modeling

Ontologies are intended to represent one particular view of the 
modeled domain in an unambiguous and well-defined way.

● usually do not tolerate inconsistencies and ambiguities

● provide valid inferences

● are much closer to “scientific” theories than to fuzzy common 
sense knowledge



Ontology Representation

● Complex knowledge representation

∀i (Pacific_Island(i) → Island(i) ∧ ∃o(Ocean(o) ∧ locatedIn(i, o)))

● Most of the ontology representation languages are based 
on logical formalisms (Bruijn, 03)

● Trade-off between expressivity and complexity



Interface between
Ontologies and Lexicons

In order to be used in an NLU application, ontologies need to have 
an interface to a natural language lexicon.

Methods of interfacing (Prevot et al., 05):

• Restructuring a computational lexicon on the basis of ontological-   
   driven principles

• Populating an ontology with lexical information

• Aligning an ontology and a lexical resource



Expert-developed ontologies
DOLCE (http://www.loa.istc.cnr.it/old/DOLCE.html) - aims at capturing the 
upper ontological categories underlying natural language and human 
common sense.

● conceptually sound and explicit about its ontological choices

● no interface to lexicon

● used for interfacing domain-specific ontologies

http://www.loa.istc.cnr.it/old/DOLCE.html


Expert-developed ontologies

SUMO (http://www.ontologyportal.org/) - is an integrative database
created “by merging publicly available ontological content into a single 
structure”

● has been criticized for messy conceptualization (Oberle et al., 2007)

● linked to the WordNet lexicon (Niles et al., 2003)

● used by a couple of QA systems (Harabagiu et al., 2005; Suchanek, 

2008)



Expert-developed ontologies
Extensive development of domain-specific ontologies was 
stimulated by the progress of Semantic Web

● knowledge representation standards (e.g., OWL)  
● reasoning tools mostly based on Description Logics (Baader

et al., 03)

NLU applications that employ reasoning with domain ontologies:
● information retrieval (Andreasen&Nilsson, 04; Buitelaar&Siegel, 06)
● question answering (Mollá &Vicedo, 07)
● dialog systems (Estival et al., 04)
● automatic summarization (Morales et al., 08)

However, the full power of OWL ontologies is hardly used in NLU 
(Lehmann&Völker, 14)

● low coverage
● lack of links to lexicon
● no need for expressive knowledge (yet!)



Expert-developed ontologies

GoodRelations (http://www.heppnetz.de/projects/goodrelations/) - is a 
lightweight ontology for annotating offerings and other aspects of  
e-commerce on the Web.

● used by Google, Yahoo!, BestBuy, sears.com, kmart.com, … 
to provide rich snippets



Community-developed 
ontologies

YAGO (www.mpi-inf.mpg.de/yago/) - is a KB derived from 
Wikipedia, WordNet, and Geonames

● 10 million entities (persons, organizations, cities, etc.), 
120 million facts about these entities, 350 000 classes

● attaches a temporal and spacial dimensions to facts
● contains a taxonomy as well as domains (e.g.  "music" 

or "science")

Used by Watson 
and many other NLU systems,
facilitates Freebase and DBPedia

http://www.freebase.com/


Community-developed 
ontologies

Freebase (http://www.freebase.com/) - is a community-curated 
database of well-known people, places, and things.

● 1B+ facts, 40M+ topics, 2k+ types

● data derived from Wikipedia and added by users

● A source of Google's Knowledge Graph

● provides search API

● geosearch

http://www.freebase.com/


Community-developed 
ontologies

Google Knowledge Graph a knowledge base used by 
Google to enhance its search engine.

● data derived from CIA World Factbook, Freebase, and 
Wikipedia



Community-developed 
ontologies

Google Knowledge Graph a knowledge base used by 
Google to enhance its search engine.



Community-developed 
ontologies

Google Knowledge Graph a knowledge base used by 
Google to enhance its search engine.



Extracting knowledge 
from corpora

● The Distributional Hypothesis: “You shall know a word by 
the company it keeps” (Firth, 57)

● Two forms are similar if these are found in similar contexts
● Types of contexts:

- context window
- document
- syntactic structure

Two useful ideas:
● patterns (Hearst, 92)

dogs, cats and other animals
malaria infection results in the death ...

● pointwise mutual information (Church&Hanks, 90)



What we can learn
● Semantic/ontological relations between nouns (Hearst, 92; 

Girju et al., 07; Navigli et al., 11)
dog is_a animal, Shakespeare instance_of playwright, branch part_of tree

● Verb relations, e.g., causal and temporal (Kozareva, 12)
chemotherapy causes tumors to shrink

● Selectional preferences (Resnik, 96; Schulte im Walde, 10)
people fly to cities

● Paraphrases (Lin&Pantel, 01)
X writes Y - X is the author of Y

● Entailment rules (Berant et al., 11)
X killed Y → Y died

● Narrative event chains (Chambers&Jurafsky, 09)
X arrest, X charge, X raid, X seize, X confiscate, X detain, X deport



What we cannot learn yet

● Relations between abstract concepts/words
idea, shape, relation

● Negation, quantification, modality
X is independent → there is nothing X depends on

● Complex concept definitions
Space - a continuous area or expanse which is free, available, or 
unoccupied

but see (Völker et al., 07)

● Abstract knowledge
X blocks Y → X causes some action by Y not being performed



Available large corpora
● English Gigaword (https://catalog.ldc.upenn.edu/LDC2011T07) 

10-million English documents from seven news outlets

● ClueWeb '09, '12 (http://lemurproject.org/clueweb09/, 
http://www.lemurproject.org/clueweb12.php/)

- '09: 1 billion web pages, in 10 languages
- '12: 733 million documents

● Google ngram corpus 
(http://storage.googleapis.com/books/ngrams/books/datasetsv2.html)

3.5 million English books containing about 345 billion 
words, parsed, tagged and frequency counted 

● Wikipedia dumps (http://dumps.wikimedia.org/)

4.5 million articles in 287 languages

● Spinn3r Dataset (http://www.icwsm.org/data/)
386 million blog posts, news articles, classifieds, forum 
posts and social media content

http://lemurproject.org/clueweb09/
http://www.lemurproject.org/clueweb12.php/
http://dumps.wikimedia.org/
http://www.icwsm.org/data/


Some useful resources 
learned automatically

● VerbOcean: verb-based paraphrases
(http://demo.patrickpantel.com/demos/verbocean/)
X outrage Y happens-after/is stronger than X shock Y

● wikiRules: lexical reference rules (http://u.cs.biu.ac.il/~nlp/resources/
downloads/lexical-reference-rules-from-wikipedia)
Bentley –> luxury car, physician –> medicine, Abbey Road –> The Beatles

● Reverb (http://reverb.cs.washington.edu/): binary relationships 
Cabbagealso contains significant amounts of Vitamin A

● Proposition stores (http://colo-vm19.isi.edu/#/)
 subj_verb_dirobj people prevent-VB tragedy-NN

● Database of factoids mined by KNEXT 
(http://cs.rochester.edu/research/knext/)
A tragedy can be horrible  [⟨det tragedy.n⟩ horrible.a]

http://demo.patrickpantel.com/demos/verbocean/
http://u.cs.biu.ac.il/~nlp/resources/
http://reverb.cs.washington.edu/


World knowledge resources
Lexical-

semantic 
dictionaries

Expert-
developed 
ontologies

Community-
developed 
ontologies

Corpora

knowledge 
obtained

manually manually manually automatically

relations 
defined on

word senses concepts concepts words

language-
dependence

yes no no yes

domain-
dependence

no yes/no yes/no yes/no

structure simple complex simple simple

coverage small small large large

consistency no (defeasible) yes yes no (defeasible)

examples WordNet, 
FrameNet, 
VerbNet

SUMO, Cyc, 
DOLCE, 
GoodRelations

YAGO,  
Freebase, 
GoogleGraph

Gigaword, 
Clueweb, Google 
ngram corpus 



Knowledge resources 
at work

Recognizing Textual Entailment resources: 
http://www.aclweb.org/aclwiki/index.php?title=RTE_Knowledge_Resources



Summary

● What NLU needs and can provide right now:
- defeasible knowledge bases 
- with simple structure 
- and high coverage

● Most useful resources so far:
- large lexical-semantic dictionaries (WordNet)
- community-curated knowledge graphs

● Large-scale NLU currently neither uses nor provides 
expressive ontologies

● Note: resources of different types can be successfully used 
in combination (Ovchinnikova, 12)
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Reasoning
for NLU



Inference-based NLU pipeline

Text Formal
representation

Queries

Semantic 
parser

Inference
machine

Final 
application

Knowledge 
base



Inference
- the process of deriving conclusions from premises known or 
assumed to be true.

Neural networks

Theorem provers

Symbolic – knowledge is encoded 
in the form of verbal rules

Sub-symbolic – knowledge is encoded 
as a set of numerical patterns

Expert systems

Support Vector Machines

Constraint solvers



Logical inference for NLU
Deduction   is valid logical inference.

If X is true, what else is true?

∀x(p(x) → q(x)) Dogs are animals.

p(A) Pluto is a dog.

q(A) Pluto is an animal.

Abduction  is inference to the best explanation.

If X is true, why is it true?

∀x(p(x) → q(x)) If it rains then the grass is wet.

q(A) The grass is wet.

p(A) It rains.



Deduction for NLU

● The idea of applying deduction to NLU originated in the 
context of question answering (Black, 64; Green&Raphael, 68) 
and story understanding (Winograd, 72; Charniak, 72).

● Two main directions (Gardent&Webber, 01):

- check satisfiability (Bos, 09)

- build models (Bos, 03; Cimiano, 03)



Satisfiability check

Filter out unwanted interpretations (Bos, 09)

The dog ate the bone. It was hungry.

Two interpretations:
∃d, b, e (dog(d) ∧ eat(e,d,b) ∧ hungry(d)) The dog was hungry.
∃d, b, e (dog(d) ∧ eat(e,d,b) ∧ hungry(b)) The bone was hungry.

Knowledge:
∀x(hungry(x) → living_being(x)) Only living beings can be hungry.
∀d(dog(d) → living_being(d)) Dogs are living beings.
∀b(bone(d) → ¬ living_being(b)) Bones are not living beings.



Model building
● More specific representation is constructed in the course of 

proving the underspecified one (Bos, 03; Cimiano, 03)

● Model builder - a program that takes a set of logical 
formulas Φ and tries to build a model that satisfies Φ.

● Consistency check “for free” 
● Minimal models are favored



Model building

John saw the house. The door was open.

Logical representation:
∃ j, s, h, e, d (John(j) ∧ see(e,j,h) ∧ house(h) ∧ door(d) ∧ open(d))

Knowledge:
∀x(house(x) → ∃ d( door(d)∧ part_of(y,x)) Houses have doors.

Two models:
M1 = {John(J), see(E,J,H) ∧ house(H) ∧ has_part(H,D1) ∧ door(D1) ∧ 
door(D2) ∧ open(D2)}

M2 = {John(J), see(E,J,H) ∧ house(H) ∧ has_part(H,D) ∧door(D) ∧ 
open(D)}



Theorem provers

Nice comparison of existing theorem provers available at
 http://en.wikipedia.org/wiki/Automated_theorem_prover



Applications of theorem 
proving to NLU

● Dialog systems (Bos, 09)

● Recognizing textual entailment (Bos&Markert, 06; Tatu&Moldovan, 07)



Problems

● Unable to choose between alternative interpretations if 
both are consistent 

● Model minimality criteria is problematic
● Unable to reason with inconsistent knowledge
● If a piece of knowledge is missing, fails to find a proof
● Unlimited inference chains
● Reasoning is computationally complex



Markov Logic Networks

● First-order inference in a probabilistic way 
● FOL formulas are assigned weights
● An instantiation of Markov Network, where logical formulas 

determine the network structure
● MLN – template for constructing Markov Network

(Richardson and Domingos, 2006)



Markov Logic Networks
A Markov Logic Network L is a set of pairs (Fi,wi), where Fi is a 
formula in FOL and wi is a real number. Together with a finite 
set of constraints C={c1,..,cn} it defines a Markov Network ML,C 
as follows:

● ML,C contains one binary node for each possible grounding 
of each predicate occurring in L. The value of the node is 1 
if grounding is true, and 0 otherwise.

● ML,C contains one feature for each possible grounding of 
each formula Fi in L. The value of this feature is 1 if th 
ground formula is true, and 0 otherwise. The weight of the 
feature is wi. 



Probability distribution

Weight of formula i No. of true groundings of formula i in x
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Example

0.7 Smokes(x) → Cancer(x)

0.6 Friends(x,y) → (Smokes(x) ∧ Smokes(y))

Two constants: A and B

Friends(A,B)

Friends(A,A) Friends(B,B)Smokes(A) Smokes(B)

Cancer(B)Cancer(A)



MLN software

● Alchemy (http://alchemy.cs.washington.edu/)

● Probcog (http://ias.cs.tum.edu/software/probcog)

http://alchemy.cs.washington.edu/


MLN applications to NLU

● General discourse interpretation (Garrette et al., 11; Beltagy et 
al., 14)

● Recognizing textual entailment (Qiu et al., 12)



Still problems

● Unable to choose between alternative interpretations if 
both are consistent

● Model minimality criteria is problematic
● Unable to reason with inconsistent knowledge
● If a piece of knowledge is missing, fails to find a proof
● Unlimited inference chains
● Reasoning is computationally complex (too many 

groundings)



Probabilistic Soft Logic
(Kimmig et al., 2012)

Similar to Markov Logic Networks. Differences:
● ground atoms have soft, continuous truth values in the 

interval [0, 1] rather than binary truth values
● Inference algorithm (Most Probable Explanation) can be 

implemented efficiently in polynomial time.

Application of PSL to NLU:
● Semantic Textual Similarity (Beltagy et al., 14)



Abduction for NLU

● Abduction – inference to the best (most economical) 
explanation.

● Idea: 
– New text = observation
– Context = background knowledge
– Interpreting text = providing the best explanation of 

why it would be true

● Early abduction-based approaches to discourse 
interpretation (Norvig, 83; Wilensky, 83; Charniak&Goldman, 89; 
Stickel, 90; Hobbs et al., 93)
– Disambiguation
– Metonymy/metaphor resolution
– Coreference resolution
– ...



Abduction: definition
Given:Background knowledge B, observations O, where both 

B and O are sets of first-order logical formulas,

Find: A hypothesis H such that H ∪ B |= O; H ∪ B |≠ ⊥, where 
H is a set of first-order logical formulas.

Typically, 
● observations are conjunctions of propositions and variable 

inequalities existentially quantied with the widest possible 
scope

● background knowledge is a set of Horn clauses



Inference operations

Backchaining (introduction of new assumptions)

Unification (merging of prepositions)
set of hypotheses



Example

house(h)∧door(d)

house(u) has_part(u,d)

● ensures discourse coherence
● allows incomplete knowledge
● supports defeasible knowledge

u=h

John saw a house. The door was open.



Estimating Hypothesis 
Likelihood

Many explanations can be found for the same observation. 

Shakespeare's tragedy : 

Did Shakespeare write a play or experience a drama?

How to chose the best one?
● Cost-based abduction (Charniak&Shimony, 90)

● Bayesian Networks-based abduction (Pearl, 88; 
Charniak&Goldman, 89; Raghavan&Mooney, 10)

● Markov Logic Networks-based abduction (Kate and Mooney, 09)

● Weighted abduction (Hobbs, 93)

Discussion of these approaches: (Ovchinnikova et al., 13)

   



Cost propagation scheme in 
weighted abduction

Each observable is assigned a cost (how probable it is to be 
explained vs. assumed)

O = {q(A)$10}
● Each assumption in KB is assigned a weight (how probable it is 

that it explains given literal)
B = {p(x)1.2   ∧ s(y)0.2 → q(x)}

● Cost of the new assumption is a function of its weight and the 
cost of the explained literal. Usually f(w,c) = w*c is used. 
Given O, assuming p(A) costs $12.

● If a literal is explained, its cost = 0
O = {q(A)$10} → H0 = q(A)$0 ∧ p(A)$12

● If two literals are unified, then the cost of unification is the 
minimal cost out.
O = {q(x)$10 ∧ q(y)$20} → H1 = q(x)$0 ∧ q(y)$0 ∧ x=y$10

● Interpretation cost = sum of costs of all assumptions 
cost(H0) = $12

   



Example
Shakespeare(x2)$10∧of(x3,x2)$10∧tragedy(x3)$0

OBSERVATION COST = $30

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Example
Shakespeare(x2)$10∧of(x3,x2)$10∧tragedy(x3)$0

dramatic event(x3)$12

OBSERVATION COST = $32

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Example
Shakespeare(x2)$0∧of(x3,x2)$10∧tragedy(x3)$0

dramatic event(x3)$12person(x2)$11

OBSERVATION COST = $33

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Example
Shakespeare(x2)$0∧of(x3,x2)$0∧tragedy(x3)$0

dramatic event(x3)$0

experiencer(x2,x3)$66

person(x2)$0

OBSERVATION COST = $66

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Example
Shakespeare(x2)$0∧of(x3,x2)$0∧tragedy(x3)$0

play(x3)$0author(x2,x3)$66

person(x2)$0

OBSERVATION COST = $66

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Example
Shakespeare(x2)$0∧of(x3,x2)$0∧tragedy(x3)$0

playwright(x2)$0

play(x3)$0author(x2,x3)$0

author(x2,u1)$0

person(x2)$0

play(u1)$0

author(x2,u1=x3)$6 play(u1=x3)$6

OBSERVATION COST = $12

Shakespeare(x) → playwright(x)1.2

Shakespeare(x) → person(x)1.1

playwright(x) → author(x,y)0.5 ∧ play(y)0.5

person(x) ∧ of(x,y) ∧ play(y) → author(x,y)2.0

tragedy(x) → play(x)1.2

tragedy(x) → dramatic_event(x)1.2

person(x) ∧ of(x,y) ∧ dramatic_event(y) → experiencer(x,y)2.0



Why is it a nice framework 
for NLU?

● Allows assumptions 

● Can deal with incomplete, inconsistent, and defeasible 
knowledge

● Supports discourse coherence (favors explanations with 
more unifications)

● Restricts inference chains

   



Problems

● Lack of expressivity (Horn clauses)

● No consistency check

   



Complexity of reasoning

● Generating search space has exponential complexity

● Previous implementation: Mini-TACITUS (Mulkar et. al, 07)

around 30 min per sentence/1000 axioms

Solution: 
implementation based on Integer Linear Programming 
(Inoue and Inui, 11)

   



Integer Linear Programming 
(ILP)

 - a technique for the optimization of a linear objective 
function, subject to linear equality and linear inequality 
constraints.

maximize cTx
subject to Ax ≤ b
and x ≥ 0

Example:

maximize S1x1 + S2x2

subject to 0 ≤ x1 + x2 ≤ L



Weighed abduction as ILP 
problem

1. Apply all possible axioms generating new assumptions.

2. Candidate interpretations can be represented as an 
arbitrary combination of assumptions.



Weighted abduction as ILP 
problem

3. Introduce variables for each predication p which define 
whether p is included into the best interpretation, unified 
with other predications, etc.

hp = 1, if p is included into the interpretation, otherwise hp=0

rp = 1, if p does not pay its cost, otherwise rp=0

up,q = 1, if p is merged with u, otherwise up,q=0

4. Define constraints on these variables
 hp = 1 for each input p

 up,q ≤ ½ (hp + hq) for each p, q

5. Represent cost of hypothesis as linear function of 0‐1 
variables

         cost(H) = c1・ hp1 +... + cn ・ hpn

6. Use state‐of‐the‐art ILP solver for finding assignments of the 
variables, which minimize the objective function



Weighed abduction as ILP 
problem



Comparison with Mini-TACITUS

(Inoue&Inui, 11)

● Dataset:          50 plan recognition problems, 107 axioms
                 (evaluation dataset for ACCEL)

System Depth % 
solved

Time 
[sec]

Precision Recall F-measure

Mini-Tacitus 1 28 8.3 43 61 50

2 20 10.2 38 64 47

3 20 10.2 38 64 47

ILP-system 1 100 0.03 57 69 62

2 100 0.36 53 76 62

3 100 0.96 53 77 62



Applications of weighted 
abduction to NLU

● Recognizing textual entailment (Ovchinnikova et al., 11; Inoue et al., 
14)

● Coreference resolution (Inoue et al., 12)

● Recognizing Implicit Discourse Relations (Sugiura et al., 13)

● Metaphor interpretation (Ovchinnikova et al., 14)



Summary
● Automatic theorem proving has significant 

limitations as applied to NLU
● Probabilistic deduction is promising
● Abduction has some nice features relevant for NLU, 

e.g., it supports discourse coherence 
● Integer linear programming can help with the 

complexity issue
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End-to-end NLU system

   

Implemented for: English, Spanish, Russian, Farsi

https://github.com/eovchinn/ADP-pipeline

   

Text

Parser
English: Boxer

Spanish, 
Russian,

Farsi: Malt

Logical
form

Abductive 
reasoner

Interpretation

Knowledge 
base

Logical form 
converter

Parse



NLU applications



Inference-based NLU pipeline

Text Formal
representation
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Semantic 
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Inference
machine

Final 
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Knowledge 
base



Recognizing textual 
entailment (RTE)

(Dagan&Glickman, 05; Dagan et al., 13; Bos, 13; Bos, 14)

Text : John gave a book to Mary.
Hypothesis : Mary got a book.
Entailment: YES

Text : John gave a book to Mary.
Hypothesis: Mary read a book.
Entailment: NO

Task:     given a Text-Hypothesis pair predict entailment



Recognizing textual 
entailment (RTE)

● captures major semantic inference needs in natural 
language understanding

● generic for several NLU applications: 

– information extraction: extracted information should be 
entailed by the corresponding text.

–  question answering: the answer is entailed by the 
supporting text fragment. 

– summarization: the text should entail its summary.



Deduction for RTE
Nutcracker system (http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker)

Theorem prover:
● T → H Entailment
● ¬(T ∧ H) Inconsistency, no entailment

T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

● KB ∧ T → H Entailment
● ¬(KB ∧ T ∧ H) Inconsistency, no entailment

T: Crude oil prices soared to record levels.
H: Crude oil prices rise.

Model builder:
● ¬(T ∧ H) No entailment possible
● T ∧ H Entailment possible

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker


Deduction for RTE
Nutcracker was evaluated on RTE-2 Challenge dataset (Bos and 
Markert, 06). 

In this evaluation:
● The dev and test datasets contain 800 T-H pairs each.
● Shallow features (lexical overlap) were together with deep 

features (logical proofs)
● Small KB of world knowledge created manually
● Difference of T and H model sizes used as another feature

Results:
● Overall performance without deep features was better!
● 29 proofs found (22 correct proofs)
● 19 proofs without KB
● 10 proofs with a small manually created KB

Reason: missing knowledge, hard YES/NO inference



T: John is arrested H: John is in prison

Does knowing T helps to understand H?
→ How much does T reduce the cost of interpreting H?

ARREST IMPRISONMENT

CRIMINAL SCENARIO

Weight 1 Weight 2

Weight 3 Weight 4

RTE as Discourse Interpretation



RTE as Discourse Interpretation

T: John killed Bill H: John is in prison

CRIME IMPRISONMENT

CRIMINAL SCENARIO

Weight 5 Weight 2

Weight 6 Weight 4

ARREST

CRIME

Weight 7



Abduction for RTE

Procedure:

1. compute   best interpretation of T towards KB:          

KB ⇒ Int(T)

2. compute  best interpretation of H towards KB:          

KB ⇒ Int(H)

3. add   best interpretation of T to KB:             

KB + Int(T)

4. compute best interpretation of H towards KB + I(T):  

KB + Int(T)⇒ IntKB+Int(T)(H)

5. is  cost (IntKB (H)- IKB+Int(T) (H) ) > threshold  ?

Note: threshold is defined in training



Statistics of axioms used in 
the  RTE&coref experiments

● lexeme-synset mappings (~ 422 000 axioms)

● WordNet synset relations (~ 141 000 axioms)

● WordNet derivational relations (~ 35 000 axioms)

● synset definitions (~ 120 500 axioms)

● mapping of lexemes to FrameNet frames (~ 35 000 axioms)

● frame relations (~ 5 900 axioms)

   



RTE experiment
(Inoue et al., 14)

● Datasets: RTE Challenge 1-5 datasets
● Axioms weights derived from annotated corpora

RTE Dev Test Accuracy Baseline Average

1 567 800 54.2 53.6 54.6

2 800 800 61.4 59.2 60.3

3 800 800 62.7 62.8 54.4

4 - 1000 57.1 58.8 59.4

5 600 600 61.0 60.3 61.4

Main problem: coreference!



Coreference problem

   

Simple merging of predicates with the same name does not work

● John eats an apple and Bill eats an apple.

● risk of conflict of interests

● John likes the red apple and the green apple.

Solution: weighted unification



Weighted unification

   

Unification is modeled in a machine-learning framework

Negative features:

● Incompatible properties (black – white)

● Frequent predicates (of, go)

● Arguments of the same predicate (give(e1,x1,x2,x3))

● Explicit non-identity (similar to, different from)

● Functional relations (father of)

● Modality (not, believe)

Positive features:

● Common properties (John was jogging, while Bill was sleeping. He jogs 
every day)

● Derivational relations (buy(e1,x,y), buyer(x))



Coreference experiment

   

(Inoue et al., 12)

● Dataset: CoNLL-2011 dataset
● Axiom weights and features weights derived by learning

Results: 
● Best performance (BLANC F-measure) with all features in 

combination
● Outperforms the naive approach by more than 20% F-

measure  (60.4 vs. 39.9)
● Some overmergings are were not captured

– Different syntactic representation of the same property 
(Japanese goods vs. goods from Germany)

– Discourse salience (He sat near him)



Lessons learned

   

● For the first time large-scale inference-based NLU is possible

● Just pumping in knowledge and running an inference 
machine is not enough: How to choose the best 
interpretation?

– Which unifications/mergings do we allow?

– Where to get knowledge about inconsistency?

– How to estimate probabilities? (Srikumar&Roth, 13)



Narrativization of videos
(Heider-Simmel Interactive Theater at ICT/ISI)

   



   

Film by Fritz Heider and his student, Marianne Simmel, 1944



Fritz Heider

“...it has been impressive 
the way almost 
everybody who has 
watched it has perceived 
the picture in terms of 
human action and human 
feelings.”



Heider-Simmel Interactive 
Theater: Project goal

Automatically interpret simple 2-dimensional videos (similar 
to the original Heider-Simmel video) in terms of mental states 
(goals, intentions, emotions) expressed by natural language 
narratives.

 http://narrative.ict.usc.edu/heider-simmel-interactive-theater.html
 



Solution
Action recognition
Actions are identified using contemporary Gesture 
Recognition methods

Interpretation as abduction
The internal causes are identified as the best proofs of 
the observed behaviors, using a formal theory of 
Commonsense Psychology in the reasoning framework 
of abductive inference

Data-driven narrative generation
Textual narratives are generated from the best proofs 
using contemporary grammar and data-driven 
language generation techniques, from thousands of 
example narratives



Solution

Best 
interpretation

Natural 
language
narration

Abduction

Authors and 
others

Detected 
actions

Action
 detection

Lear
ned

mapping

Commonsense
theories



Example



Example
Observation:    chase(e1,BigT,Cir) & open(e2,LittleT,Door) & 

  face(e3,LittleT,e1)
BigT is chasing Cir. LittleT opens Door and faces the chasing scene.

Interpretation: goal(e3,BigT,e4) & get(e4,BigT,Cir) &    
                              goal(e5,Cir,e4)& escape(e6,Cir,BigT) & 
                              frustrated(e7,BigT) & afraid(e8,Cir) &

 watch(e9,LittleT,e1) & pays_attention_to(e10,LittleT,e1)
The goal of BigT is to get Cir, the goal of Cir is to escape BigT, BigT is frustrated, Cir 
is afraid. LittleT is watching the chasing, it pays attention to it. 

Background knowledge (Commonsense theories):
1.People execute plans because they envision that doing so will cause their goals to 

be achieved
2.When people chase, they want to get
3.When people are chased, they want to escape
4.People feel fearful about an envisioned possible event that violates their goals
5.People feel frustrated about the failure of their plans to achieve their intended 

goals
6.If people face something, they watch it
7. If people watch something, they pay attention to it
8....



Interpretation proofgraph



http://hsit.ict.usc.edu/


Triangle Charades Game
● for collecting training data
● use English verbs as action labels
● compute agreement and confusability

(Roemmele et al.. 14)

http://sayanything.ict.usc.edu/charades/


Textual+visual knowledge

   

● LEVAN project at Paul Allen's institute:

     http://levan.cs.washington.edu/ 

http://levan.cs.washington.edu/


Summary

   

● Linguistic and visual input can be interpreted with the similar 
methods/in combination 
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Final summary
● NLU requires knowledge about linguistic structures and 

the world + ability to draw inferences

● Translating NL into logical representations is kind of solved

- Use rule-based parsers for general domain applications

- Train your own domain-specific parser

● World knowledge can be obtained from:

- Lexical-semantic dictionaries

- Expert- or community-developed ontologies

- Corpora

● It's still not easy to obtain structurally complex knowledge



Final summary
● Logical inference is not yet really fit for NLU

- it should be probabilistic, but what are other 
requirements?

● Deep approaches to NLU based on inference do not yet 
beat shallow approaches on a large scale.

● Observations/knowledge of different types (textual, 
visual) can be interpreted or used for interpretation in 
the same framework.





● Now, when inference-based NLU work on a large scale, 
we should explore what logic can and cannot do in real 
applications.

● It is still unclear, what kind of structural complexity of 
knowledge we need for NLU applications (what cannot 
be learned, does not exist)

● Logical structure of NL can inform machine learning 
approaches.

● Multi-modal interpretation frameworks have a great 
potential.
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