
© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

Solving Terminological Inconsistency Problems in
Ontology Design

Ekaterina Ovchinnikova, Tonio Wandmacher, Kai-Uwe Kühnberger

Institute of Cognitive Science
University of Osnabrück

Osnabrück, Germany
e.ovchinnikova@uos.de, tonio.wandmacher@uos.de,

kkuehnbe@uos.de

Abstract: Information models and ontologies, although originally developed for
different applications and most often used in different disciplines, share several
common features. It is natural to assume that techniques applicable for knowledge
representation tasks based on ontologies, can be used for information models as well.
In this paper, the focus will be on resolving inconsistencies in ontology design. In
particular, an algorithmic solution is proposed that allows to automatically rewrite
certain types of occurring inconsistencies in terminological hierarchies. Furthermore an
experimental evaluation of the proposed algorithm is sketched.

Introduction

Information models play an important role in information systems, current state of
the art tools for management tasks, and the controlling of production processes.
The overall aim of information models is primarily to structure management
information.1 Although there is a variety of these models [M01] making it difficult
to keep track of the different versions and their applications, it seems to be the
case that most of these models contain a core of certain key features. Some
examples of such features are summarized in the following list (cf. [W03] for the
common information model):

o A hierarchical structure is imposed on information types.
o A conceptual (often object-orientied) perspective allows the ordering of

entities into instances, properties, classes, subclasses, operations, and
relations.

o Additional information can be coded by meta schemes.

Most of the mentioned aspects are in one or the other form also contained in
classical ontology-based frameworks for knowledge engineering tasks originally
developed for other purposes like semantic web applications, expert systems, or
text processing applications. For example, ontologies are based on classes,
instances, a subsumption relation (i.e. a hierarchical structure of classes), relations
between classes etc. In a certain sense, information models can be considered as a
special type of ontologies [DVBAPD04]. Therefore it is not surprising that there is
the possibility to map concepts of information models to constructs of an

1 Distributed Management Task Force: CIM Tutorial, available online at:
http://www.wbemsolutions.com/tutorials/CIM/.

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

approrpiate ontological language: for example, in [QAWBS04], the authors propose
such a mapping for CIM and a RDF/S ontology.

A further corresponding aspect is the hierarchical set-up of the usability of both
concepts. Whereas general and reusable ontologies build the basis of this hierarchy
and more specific and usable domain ontologies for concrete applications are
located at the top, this is mirrored by certain information models as well. In
[DVBAPD04], the authors propose, for example, to associate application ontologies
with extension schemas of CIM, domain ontologies with the CIM common model or
generic domain ontologies with the CIM core mode. Such correspondences do not
only hold for CIM, but on a more general level as well. For example, using a
framework from software development, one can also find similar correspondences
between MDA layers (Model-Driven Architecture) [GDD05] and ontologies: whereas
UML based models correspond to generic domain ontologies, meta-object families
(MOF) in MDA can be associated to representation ontologies. Last but not least, an
important fact, demonstrating the applicability of ontologies to information
modeling is the fact that formal ontologies are also used as a conceptual (or
terminological) component in diverse information systems (see [G98] for an
overview).

Although there are several similarities between information models and ontologies,
there is also an important differnce, namely with respect to the usage of reasoning
techniques: on the one hand, with respect to ontologies reasoning techniques can
be applied in order to deduce new facts, because ontological knowledge is based
on axiomatic specifications defined in precise logical formalisms. In a certain
sense, ontologies were developed in order to allow the implementation of efficient
reasoning techniques. On the other hand, in information models, reasoning
applications at least do not play a similarly important role (if used at all), although
newer developments attempt to extend information models towards this direction
[AFFS06].

A well-known problem in knowledge engineering are occurring inconsistencies. In
information models, the situation is quite similar: because analysis tools for
information models require verification and validation techniques occurring
inconsistencies need to be resolved – if possible automatically [M98]. In this paper,
we will suggest and discuss an approach to automatically resolve inconsistencies in
hierarchically structured terminological knowledge bases.

Ontologies and Description Logics

Although there is no generally accepted definition of what an ontology is [SM01],
from an abstract point of view, an ontology contains as a core terminological
knowledge in form of hierarchically structured concepts. These concepts can be
enriched by relations specifying constraints on them.

Certain standards allow to represent ontological knowledge in well-defined
languages. In recent years the fast development of the world-wide-web has brought
about a wide variety of standards for knowledge representation. Probably the most

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

important existing markup language for ontology design is the Web Ontology
Language OWL in its three different versions: OWL Lite, OWL DL, and OWL Full
[OWL04]. The mentioned OWL versions are hierarchically ordered, such that OWL
Full includes OWL DL, and OWL DL includes OWL Lite. Consequently they differ in
their expressive power with respect to possible concept formations.

All versions of OWL are based on the logical formalism called description logic (DL)
[BCMNP03]. Description logics were originally designed for the representation of
terminological knowledge and reasoning processes. They can be characterized as
subsystems of first-order predicate logic using at most two variables. Two points
should be mentioned:

o In comparison to full first-order logic, description logics are – due to their
restrictions concerning quantification – rather weak logics with respect to
their expressive power.

o DLs can be used to characterize the different OWL versions. For example,
OWL DL can be logically characterized as a syntactic variant of the
description logic SHOIN(D) [MSS04].

A classical distinction in description logic is to separate terminological knowledge
about concepts and facts in two different data structures. Knowledge about the
hierarchical structure of concepts is coded in the so-called TBox (terminological
box) whereas knowledge about facts is coded in the ABox (assertion box).

A DL terminology contains terminological axioms that define concepts occuring in
the domain of interest. Core axioms are of the form A ⊑ D (meaning that A is a
subconcept of D) or A1 ≡ A2 (meaning that concepts A1 and A2 are logically
equivalent), where A stands for a concept name and D stands for a concept
definition constructed from concept and role names with the help of syntactic rules
using classical logical operators. An ABox is a finite set of facts C(a) or R(b,c)
where C is a concept name, R is a relation name, and a, b and c are individuals.
C(a) means that an individual a belongs to a concept C and R(b,c) means that
individuals b and c are connected with a relation R.

DL expressions are interpreted in a classical model theoretic way: formally, an
interpretation I is a mapping assigning to each concept name A a subset of the
domain ∆ and to each role name R a subset of the Cartesian product ∆ × ∆. An
interpretation I is a model of a Tbox T if for every inclusion axiom A ⊑ D we have
I(A) ⊆ I(D) and for every equality axiom A1 ≡ A2 it holds: I(A1) = I(A2). A concept
name A is satisfiable towards T if there is a model I of T such that I(A) is non-
empty.

Inconsistency in Information Modeling

Since inaccurately formulated information models may cause applications to work
incorrectly, the problem of consistency in information modeling is widely discussed

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

in the literature (cf. [M98] for an overview). Consider an example of a logical
inconsistent information model represented in natural language (taken from [L81]).

Example 1.
Everybody who has an income is a shareholder. No shareholder is also an
employee. Every employee has an income.

The informal description in Example 1 is inconsistent, since it is impossible to find
an employee who will satisfy this model, because according to the model every
employee has an income, is a shareholder, and is not a shareholder simultaneously.
Thus, the model in Example 1 is inconsistent and is unusable in practice.

In order to ascertain that an information model is meaningful and useful one has to
perform different types of checking. An important type of checking that is usually
executed with the help of automatic verification tools (for example [E05, BKSL01])
concerns formally defined models. It can be formally verified whether such models
satisfy syntactic and semantic rules of the corresponding representation language.
Several approaches to the verification of formal information models use logical
mechanisms for the detection and elimination of logical contradictions (cf.
[BKSL01, L81, SSJM04]).

High emphasis is placed on the verification of the consistency of UML2 models
([SSJM04, E05]). In particular, Simmonds et al. [SSJM04] show that UML models can
be expressed in a description logic and, thus, DL reasoners can be used to detect
some types of inconsistencies in UML information models. Furthermore newer
developments in information modeling for management tasks enrich information
models with reasoning capabilities: in [AFFS06], the authors show that a certain
description logic is appropriate to capture the semantics of CIM models.3 In case a
calculus for reasoning is available, the question whether the underlying information
model is consistent becomes even more important, due to the fact that reasoners
are not very robust with respect to inconsistent data. If inconsistencies do occur, it
is desirable to automatically resolve their occurrence.

A simple reason for occurring inconsistencies in information models may be an
ontology that represents a terminological component of the model. If this
component is inconsistent, the proper working of the whole systems is endangered.
In the following sections, we describe an algorithm that resolves inconsistencies in
terminological knowledge bases.

2 http://www.uml.org
3 Technically it is shown that the DL logic ALεCNOQ-

HR+◦ captures the semantics of CIM. This
logic contains constructors for atomic, empty, and domain concepts. Furthermore the usual logical
connectives are covered, as well as role constructors for the various versions of quantification and
cardinality restrictions. Last but not least, constructors for inverse role, transitive roles, and role
composition are available. The described DL is rather expressive.

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

Terminological Inconsistencies

The notion of terminological inconsistency has several meanings. In [HS05], for
example, three types of inconsistency are distinguished:

o Structural inconsistency is defined with respect to the underlying
representation language. A knowledge base is structurally inconsistent, if it
contains axioms violating the syntactical rules of the representation
language (for example, OWL DL).

o Logical inconsistency is defined on the basis of formal semantics of the
knowledge base. An ontology is logically inconsistent, if the ontology has no
model.

o User-defined inconsistency is related to application context constraints
defined by the user.

In this paper, we consider logical inconsistency only. In particular, the main focus
lies on contradicting unsatisfiable terminologies.

Definition 1. A terminology T is unsatisfiable if there exists a concept C that is
defined in T and is unsatisfiable.

Informally, Definition 1 implies that an inconsistent ontology necessarily contains
logical contradictions. An ontology can be inconsistent only if its underlying logic
allows negation. Ontologies share this property with every logical system (like, for
example, first-order logic). In practice, logical inconsistency can be caused by
several reasons. For example, errors in the automatic ontology learning procedure
or mistakes of the ontology engineer can generate unintended contradictions.

Another type of logical inconsistency is connected with polysemy. If an ontology is
learned automatically, then it is hardly possible to distinguish between senses of
words that represent concepts in texts. Suppose, the concept tree is declared to be
a subconcept both of plant and of data structure (where plant and data structure
are disjoint concepts). These two interpretations of tree are true, but it is still
necessary to describe in the ontology two different concepts with two different
identifiers (e.g. TreePlant, TreeStructure).

Finally, there is a set of problems related to generalization mistakes. Let us
consider an example. Suppose that the ontology contains the following facts:

Example 2.

Bird ⊑ CanFly (Birds are creatures that can fly.)

CanFly ⊑ CanMove (If a creature can fly then it can move.)

Canary ⊑ Bird (Canary is a bird.)

Penguin ⊑ Bird ⊓ ¬CanFly (Penguin is a bird and cannot fly.)

In Example 2 the statement birds can fly is too general. After an exception
(penguin) appears, the ontology becomes inconsistent, since penguin is declared to

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

be a bird, but it cannot fly. It is easy to see that the inconsistency problem in
Example 1 can be expressen in DL and considered as a terminological inconsistency.

Related Work

Several approaches were proposed to treat inconsistencies in ontology design.
Three major types can be distinguished:

o Approaches identifying inconsistencies but not resolving them.
o Approaches that try to reason with inconsistent ontologies.
o Approaches that (semi-)automatically resolve inconsistencies.

Concerning the first type of solutions, an interesting proposal can be found in
[GLW06]. The authors propose a non-conservative extension of ontologies in the
case a concept description is satisfiable prior to an extension and unsatisfiable
afterwards: A witness concept description is introduced which reports the
inconsistency to the knowledge engineer. A number of approaches automatically
detect sets of axioms that are responsible for a particular inconsistency (cf.
[WHRDS05], [SC03]). Although these accounts cannot automatically resolve existing
inconsistencies, they can help the knowledge engineer to identify occurring
problems.

The second type of solutions contains approaches that use several well-known
techniques from non-monotonic reasoning, like default sets [HV02], planning
systems [BLMSW05], or epistemic operators [KP05]. Unfortunately these approaches
go beyond the expressive power of description logics and cannot be represented in
a description logic framework.

Finally, the third type of solutions comprises approaches that (semi)-automatically
resolve inconsistencies by removing ([FFIPS04], [HS05], [HHHSS05], [K06]) or
rewriting ([LPSV06], [OK06]) problematic axioms or parts of axioms. In general,
removing problematic information can cause a loss of intended entailments.
[HS05], [HHHSS05], and [K06] suggest to use different kinds of ratings that can help
to detect the least-damage removal of axioms. [K06] also applies a set of error
patterns to problematic axioms: If an axiom matches to such patterns, then it is
rewritten according to the corresponding repair pattern. [LPSV06] extend the
tableau-based algorithm in order to find sets of axioms causing inconsistency and
the set of “helpful” changes that can be performed to debug the ontology. [OK06]
propose an automatic amalgamation procedure changing the original ALE-
ontology4, if it conflicts with new information and rewriting overgeneralized
concept definitions.

4 See [BCMNP03] for the definition of the ALE description logic.

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

Adaptive Ontologies

In this section, we informally describe an approach to resolve inconsistent
ontologies that is based on the ideas technically introduced in [OK06] and
developed in [OK07]. The mentioned approach is extended by the treatment of
polysemy problems. Given an inconsistent ontology we want to change it
automatically in order to obtain a consistent one, according to the following
principles:

o The performed changes have to be relevant and intuitive.
o The changed ontology is formalized in a description logic language.
o As few pieces of information as possible are removed from the ontology.

In general accidental mistakes cannot be fixed automatically. But the polysemy
problem can be resolved by renaming concepts with polysemous names.
Furthermore overgeneralized concepts can be redefined so that problematic pieces
of information will be deleted from their definitions.

Adaptation Algorithm

The proposed approach treats inconsistent ontologies or consistent ones that are
extended with additional axioms conflicting with the original knowledge base.
Given a consistent ontology O (possibly empty) the procedure adds a new axiom A
to O. If O+ = O U {A} is inconsistent then the procedure tries to find a polysemy or
an overgeneralization and repairs O+ .

For the sake of simplicity let us restrict ourselves to the description of the
adaptation procedure for the TBox presuming a similar treatment for the ABox
instantiations. Suppose that the new axiom A represents a definition of a concept
C. Regarding the TBox, O+ is inconsistent if a subconcept C’ of the newly introduced
or newly defined concept C is unsatisfiable.

Unfortunately, it is impossible to distinguish between accidental mistakes,
polysemy problem and overgeneralization strictly logically. Our algorithm inspects
the definitions of the unsatisfiable concept C’, tries to fish out overgeneralized
concepts subsuming C’ and regeneralize these concepts. If no overgeneralized
concepts have been found, then the algorithm defines which concepts are
suspected to be polysemous and renames these concepts (by default or given the
consent of the user).

This algorithm can be used for (a) resolving inconsistencies in an ontology, (b)
adapting a consistent base ontology O to new axioms, and (c) merging ontologies
(in this case there are two consistent ontologies given, but their union can become
inconsistent).

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

Regeneralization of Overgeneralized Concepts

We will illustrate the regeneralization of the overgeneralized concepts on the
ontology in Example 2. Since the definition of the concept Bird is overgeneralized,
it needs to be rewritten. We wish to retain as much information as possible in the
ontology. The following solution is proposed:

Adapted ontology from Example 2.

Bird ⊑ CanMove (Birds are creatures that can move.)

FlyingBird ⊑ Bird ⊓ CanFly (Flying birds are birds that can fly.)

CanFly ⊑ CanMove (If a creature can fly then it can move.)

Canary ⊑ FlyingBird (Canary is a flying bird.)

Penguin ⊑ Bird ⊓ ¬CanFly (Penguin is a bird and cannot fly.)

We want to keep in the definition of the concept Bird (subsuming the unsatisfiable
concept Penguin) a maximum of information that does not conflict with the
definition of Penguin. The conflicting information is moved to the definition of the
new concept Flying bird, which is declared to subsume all former subconcepts of
Bird (such as Canary for example).

The example below represents a case where two overgeneralized definitions of the
same concept conflict with each other.

Example 3.
Child ⊑ ∀likes.Icecream (Children like only icecream.)

Icecream ⊑ Sweetie (Icecream is a sweetie.)

Chocolate ⊑ Sweetie (Chocolate is a sweetie.)

Icecream ⊑ ¬Chocolate (Icecream and chocolate are disjoint concepts.)

Child ⊑ ∀likes.Chocolate (Children like only chocolate.)

In Example 3, the definitions of Child (Children like only icecream and Children
like only chocolate) are too specific. Icecream and Chocolate being disjoint
concepts produce a conflict.
It seems to be an intuitive solution to replace these concepts by their least
common subsumer (see [CBH93]) Sweetie. Furthermore it is plausible to claim that
children like only sweeties without specifying it precisely, as described below:

Adapted ontology from Example 3.
Child ⊑ ∀likes.Sweetie (Children like only sweeties.)

Icecream ⊑ Sweetie (Icecream is a sweetie.)

Chocolate ⊑ Sweetie (Chocolate is a sweetie.)

Icecream ⊑ ¬Chocolate (Icecream and chocolate are disjoint concepts.)

The natural question is: how to detect overgeneralized concepts? Let us describe
the regeneralization procedure avoiding formal aspects (see [OK06] for more
detailes). If an unsatisfiable concept X is defined in the TBox T by the definitions A

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

and B5 that are logicaly conflicting (their conjunction is unsatisfiable), then the
following options can be distinguished:

- A and B are disjoint concept descriptions having common subsumers
(Example 3):
 The solution in this case is to replace the definitions A and B of X with
 their least common subsumer.

- A is defined in T and some definition DA of A conflicts with B (Example 2):
This case is considered as the overgeneralization of A. The definition
DA has to be revised as follows: (a) DA is replaced with its minimal
specific superdescription that does not conflict with B; (b) a new
concept A’ is added to the TBox as a subconcept of A and DA; (c) A is
replaced with A’ in the definitions of all its subconcepts except in the
definition of X.

- A and B are defined in T, a definition DA of A conflicts with B, and a
definition DB of B conflicts with A:

In this case there is no unique solution. On the one hand the concept
X is suspected to be polysemous. Here, the preferred solution is to
split the definition of X and rename X as, for example, X1 and X2. On
the other hand we may face two overgeneralized concepts, one or
both definitions of which can be changed in the way described in the
previous option (2). By default the procedure considers X to be
polysemous. But if the ontology engineer decides to supervise the
procedure in order to avoid possible mistakes, she can consider all
such ambiguous cases and choose a proper solution.

- Otherwise:
The concept X is suspected to be polysemous as in the previous

 option.

System Architecture

The overall architecture of the system is depicted in Figure 1. A base ontology O is
given and updated by new axioms A that are extracted automatically with the help
of some external tool or added manually by an ontology engineer. An integration
engine checks the resulting ontology for consistency. In the case inconsistencies
occur, the proposed procedure can be used to resolve these inconsistencies. The
result is an integrated consistent ontology O’. The whole process can be considered
as a cycle: the newly computed ontology O’ can be updated by new axioms and
resolved in the next cycle.

5 The definitions of X are previously converted to conjunctive normal form and split, such

that every conjunction is divided into two: {X ⊑ D1 ⊓ D2} → {X ⊑ D1, X ⊑ D2}, {X ≡ D1 ⊓ D2} →

{X ⊑ D1, X ⊑ D2, D1 ⊓ D2 ⊑ X}. Thus, every definition of X is a (negated) atomic concept or
relational restriction.

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

Figure 1. Integration process of a consistent base ontology O and a set of arriving new axioms A.

Thus, the core of the system consists of two modules: consistency checker and
inconsistency resolver. The consistency checker returns a set of conflicts and sets
of axioms that are responsible for each conflict. Using this information and the
original terminology the inconsistency resolver rewrites a problematic axiom and
conveys the changed ontology to the consistency checker again. The procedure
terminates when there are no more contradictions in the ontology.

To make description logic inferences available for our algorithm we have
integrated the KAON2 DL plug-in6 to our system designed for managing of and
reasoning on OWL ontologies. We use KAON2 as a parser for the OWL and RDF/XML
representation languages and as an independent “black box” reasoner. At present
the KAON2 reasoner fully supports OWL Lite with some extensions.

Experimental Evaluation

We roughly sketch in this section some practical experiments. The prototype
implementation of the ideas presented here was designed for resolving
inconsistencies in OWL Lite ontologies. As a base ontology we have taken the
famous wine ontology7 describing different sorts of wine, grapes and wine regions.
This ontology was created manually and thus does not contain any inconsistencies.

In order to create a domain related corpus, we generated a document set which
was automatically crawled from the web with the BootCat Tools [BB04], using the
vocabulary of the wine ontology as seed terms. We thus obtained a domain corpus
of 288 documents comprising 182,754 token. This corpus served as input to the
ontology extraction step. For this purpose we decided to use the freely available
Text2Onto8 tool, developed at the AIFB, Karlsruhe, (Germany), because this tool is
capable of extracting not only basic relations such as taxonomy, but also

6 http://kaon2.semanticweb.org
7 http://www.w3.org/TR/owl-guide/wine.owl
8 http://ontoware.org/projects/text2onto/. Special thanks to Johanna Völker, who gave us
helpful support!

Base ontology
O (consistent)

Integration engine

 Consistency
checker

Inconsistency
resolver

New axioms A

Integrated
Ontology O+
(consistent)

<owl:Class
rdf:ID=“LateHarvest“>
 <rdfs:subClassOf
rdf:resource=”#Wine”/>
 <rdfs:SubClassOf>

<owl:Class
rdf:ID=“RieslingSpaetl
 <rdfs:subClassOf
rdf:resource=”#Wine”/>

<owl:Class
rdf:ID=“SweetLateHarve
st“>
 <rdfs:subClassOf
rdf:resource=”#Wine”/>
 <rdfs:SubClassOf>

Updated
Ontology O’

possibly
inconsistent

<owl:Class
rdf:ID=“LateHarvest“>
 <rdfs:subClassOf
rdf:resource=”#Wine”/>

Iterative
inconsistency

resolution

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

disjointness and equivalence (see [CV05]). In the hereby automatically generated
ontology, we however found only concepts (2155), instances (986), subclass (385)
and instance (211) relations. We then manually filtered the extracted relations to
exclude errors. We also manually reformatted some relations to avoid a syntactic
mismatch with the original ontology. This finally resulted in an ontology of 137
valid subclass relations and 83 instance relations. The automatically generated
ontology proved to contain several logical inconsistencies with respect to the
original wine ontology. Several cases of polysemy were detected as, for example,
the champagne class being a subclass of both region and wine or the pinot noir
class which was defined to be a subclass of wine and grape.

The algorithm discovered also several cases of real overgeneralization. Consider
the following example:

O = {
<owl:Class rdf:ID="LateHarvest">
 <rdfs:subClassOf rdf:resource="#Wine"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSugar"/>
 <owl:allValuesFrom rdf:resource="#Sweet"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Dry">
 <rdfs:subClassOf rdf:resource="#WineSugar"/>
 <owl:disjointWith rdf:resource="#Sweet"/>
 </owl:Class>
 <owl:Class rdf:ID="Sweet">
 <rdfs:subClassOf rdf:resource="#WineSugar"/>
 <owl:disjointWith rdf:resource="#Dry"/>
 </owl:Class>
}

O’ = {
<owl:Class rdf:ID="RieslingSpaetlese">
 <rdfs:subClassOf rdf:resource="#LateHarvest"/>
 <rdfs:subClassOf rdf:resource="#Riesling"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSugar"/>
 <owl:allValuesFrom rdf:resource="#Dry"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
}

In this example9, the concept RieslingSpaetlese represents an exception to the
(overgeneralized) definition stating that every late harvest wine is a sweet wine.
Our system changes the corresponding ontology fragment as follows:

9 The example has slightly been modified. In the original Text2Onto output,
RieslingSpaetlese is modeled as a subconcept of DryWine.

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

{
<owl:Class rdf:ID="LateHarvest">
 <rdfs:subClassOf rdf:resource="#Wine"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSugar"/>
 <owl:allValuesFrom rdf:resource="#WineSugar"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="SweetLateHarvest">
 <rdfs:subClassOf rdf:resource="#LateHarvest"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSugar"/>
 <owl:allValuesFrom rdf:resource="#Sweet"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Dry">
 <rdfs:subClassOf rdf:resource="#WineSugar"/>
 <owl:disjointWith rdf:resource="#Sweet"/>
 </owl:Class>
 <owl:Class rdf:ID="Sweet">
 <rdfs:subClassOf rdf:resource="#WineSugar"/>
 <owl:disjointWith rdf:resource="#Dry"/>
 </owl:Class>
 <owl:Class rdf:ID="RieslingSpaetlese">
 <rdfs:subClassOf rdf:resource="#LateHarvest"/>
 <rdfs:subClassOf rdf:resource="#Riesling"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSugar"/>
 <owl:allValuesFrom rdf:resource="#Dry"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
}

The identifier for the new concept (SweetLateHarvest) was generated simply by
adding the identifier of the axiom Sweet causing the inconsistency to the
previously unsatisfiable concept RieslingSpaetlese .

Conclusion

In this paper, an approach to automatically resolve inconsistent ontologies was
presented. In particular, a solution for overgeneralized and polysemous concepts
was discussed and an experimental evaluation was sketched using standard
ontologies. This approach is sustainable in the sense that it deletes as little
conflicting information as possible from an unsatisfiable terminology, it remains
within the syntactic framework of description logics, and it does not require any
human interaction (although the human supervision of the regenezalization process
is possible). We described our algorithm as well as a prototypical implementation
of it. Furthermore we discussed a few examples from extending the wine-ontology
with automatically learned axioms, using the Text2Onto toolkit.

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

The experiment that we have presented in this paper shows that the proposed
approach is in principle relevant. But this is only a first step in evaluating the
algorithm. We intend to test our approach on larger ontologies formalized in more
expressive description logics. We hope that by testing on larger and more complex
real-world data we get a better understanding on which types of unsatisfiability
usually occur and how frequent they are. This will help to find more application-
oriented solutions to the debugging problem. From a pragmatic point of view,
several questions have to be answered: What is the best strategy to choose an
overgeneralized concept to be rewritten? How to distinguish between
overgeneralized and polysemous concepts more precise? We hope to find answers
to these questions with the help of further experiments.

We think that the approach can successfully be applied to information models as
well, since some types of logical inconsistencies in information modeling represent
substantially terminological problems (cf. examples in [L81, BKSL01, SSJM04]). In
particular, with respect to newer developments of information modeling in
business applications including reasoners such techniques will play a more
important role. But it is still a matter of investigation which types of
inconsistencies in information modeling can be caught purely logically and whether
they can be completely reduced to terminological problems.

Acknowledgments. This line of research was partially supported by the grant MO
386/3-4 of the German Research Foundation (DFG).

References

[AFFS06] Alonso, F.; Fernández, R.; Frutor, S.; Soriano, J.: Semantic Modeling of Management
Information: Enabling Automatic Reasoning on DMTF-CIM. Transactions on
Engineering, Computing and Technology, 11:24-30, 2006.

[BB04] Baroni, M.; Bernardini, S.: BootCaT: Bootstrapping Corpora and Terms from the
Web. Proceedings of LREC 2004, 2004.

[BCMNP03] Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; Patel-Schneider, P. (eds.):
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[BLMSW05] Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI-05), 2005.

[BKSL01] Baclawski, K.; Kokar, M.; Smith, J.; Letkowski, J.: Consistency Checking of RM-ODP
Specifications. ICEIS 2001, International Conference on Enterprise Information
Systems, Setúbal, Portugal, 2001.

[BB04] Baroni, M.; Bernardini, S.: BootCat: Bootstrapping corpora and terms from the web.
Proc. of Lexical Resources and Evaluation Conference, 2004.

[CV05] Cimiano, P.; Völker, J. Text2Onto - a framework for ontology learning and data-
driven change discovery. Proc.of the 10th International Conference on Applications
of Natural Language to Information Systems (NLDB’2005), 2005.

[CBH93] Cohen, W.;Borgida, A.; Hirsh, H.: Computing least common subsumers in description
logics. P. Rosenbloom and P. Szolovits, editors, Proc. of the 10th Nat.Conf. on
Artificial Intelegence (AAAI-92), 754–761, Menlo Park, California, 1993.

[DVBAPD04] De Vergara, L; Villagra, J.E.; Berrocal, V.A.; Asensio, J.; Pignaton, J.I.; Dpto, R.:
Semantic management: application of ontologies for the integration of management

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

information models. IFIP/IEEE Eighth International Symposium on Integrated
Network Management, pp. 131-134, 2003.

[E05] Egyed, A.: Instant Consistency Checking for the UML. Proceedings of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China, 2005.

[FFIPS04] Fanizzi, N.; Derilli, S.; Iannone, L.; Palmisano, I.; Semeraro, G.: Downward
refinement in the ALN description logic. Proceedings of the 4th International
Conference on Hybrid Intelligent Systems (HIS’04), pp. 68-73, 2005.

[GDD05] Gašević, D.; Djurić, D.; Devedžić, V.: Bridging MDA and OWL Ontologies. Journal of
Web Engineering 4(2): pp. 118-143.

[GLW06] Ghilardi, S.; Lutz, C.; Wolter, F.: Did I damage my ontology: A Case of Conservative
Extensions of Description Logics. Proceedings of the Tenth International Conference
of Principles of Knowledge Representation and Reasoning 2006 (KR’06), AAAI Press,
pp. 187-197, 2006.

[G98] Guarino, N.: Formal Ontology and Information Systems. In: Proc. FOIS '98, Trento,
Amsterdam IOS Press, pp. 3-15,1998.

[HS05] Haase, P.; Stojanovic, L.: Consistent evolution of OWL ontologies. Proc. of the 2nd
European Semantic Web Conference, Heraklion, Greece, 2005.

[HHHSS05] Haase, P.; van Harmelen, F.;Huang, Z.; Stuckenschmidt, H; Sure, Y.: A framework
for handling inconsistency in changing ontologies. Proc.of the Fourth International
Semantic Web Conference, LNCS. Springer, 2005.

[HV02] Heymans, S.; Vermeir, D.: A defeasible ontology language. Confederated
International Conferences: CoopIS, DOA and ODBASE 2002, edited by R. Meersman,
Z. Tari, pp. 1033-1046, 2002.

[KP05] Katz, Y.; Parsia, B.: Experiences and directions. Available online:
 http://www.mindswap.org/2005/OWLWorkshop/sub7.pdf.
[K06] Kalyanpur, A.: Debugging and Repair of OWL Ontologies. Ph.D. Dissertation,

University of Maryland College Park, 2006.
[LPSV06] Lam, J.; Pan, J.; Sleeman, D; Vasconcelos, W.: A Fine-Grained Approach to

Resolving Unsatisfiable Ontologies. Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI-2006), 428 - 434. 2006.

[L81] Lundberg, B.: On Consistency of Information Models. BIT 21(1): pp. 37-45, 1981.
[M01] Martin-Flatin, J. P.: Toward Universal Information Models in Enterprise Management.

Proceedings VLDB 2001 Workshop on Databases in Telecommunication (DBTel 2001),
Lecture Notes in Computer Science, Springer, pp. 167-178, 2001.

[MSS04] Motik, B; Sattler, U.; Studer, R.: Query Answering for OWL-DL with Rules.
Proceedings of ISWC 2004, LNCS 3298, Springer, pp. 549-563, 2005.

[M98] Mylopoulos, J.: Information Modeling in the Time of the Revolution. Information
Systems, Vol. 23, No. 3-4, 1998.

[OK06] Ovchinnikova, E.; Kühnberger, K.-U.: Adaptive ALE-TBox for Extending
Terminological Knowledge. In A. Sattar, B. H. Kang (eds.): Proceedings of the 19th
ACS Australian Joint Conference on Artificial Intelligence, LNAI 4304, Springer,
pp. 1111-1115, 2006.

[OK07] Ovchinnikova, E.; Kühnberger, K.-U.: Debugging Overgeneralized Concepts in ALCN
Terminologies. In preparation.

[OWL04] Web Ontology Language (2004), Overview. W3C Recommendation 10 February 2004.
 http://www.w3.org/TR/owl-features/.
[QAWBS04] Quirolgico, S.; Assis, P.; Westerinen, A.; Baskey, M.; Stokes, E.: Toward a Formal

Common Information Model. In C. Bussler et al. (eds.): Web Information Systems –
WISE 2004 Workshops, LNCS 3307, Springer, pp. 11-21, 2004.

[SC03] Schlobach, S.; Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. Proceedings of IJCAI'03. Morgan Kaufmann, 2003.

[SSJM04] Simmonds, J.; Van Der Straeten, R.; Jonckers, V.; Mens, T.: Maintaining Consistency
between UML Models Using Description Logic. RSTI série L'Objet, Langages et
Modèles à Objets, LMO'04, pp. 231-244, Volume 10, 2004.

[SM01] Stumme, G; Maedche, A.: FCA-Merge: Bottom-Up Merging of Ontologies. In B. Nebel
(eds.): Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI’01), pp. 225-234, 2001.

[W03] Web-Based Enterprise Management (WBEM): Technical report, Distributed
Management Task Force, 2003.

© IBIS – Issue 1 (1), 2006

IBIS – Interoperability in Business Information Systems

[WHRDS05] Wang, H.; Horridge, M.; Rector, A.; Drummond, N.; Seidenberg, J.: Debugging OWL-
DL Ontologies: A Heuristic Approach. Proceedings of the 4th International Semantic
Web Conference 2005, LNCS 3729, pp. 745–757, 2005.

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

http://www.ibis-journal.net ISSN:1862-6378

About the Authors

Ekaterina Ovchinnikova studied Mathematical, Applied, and
Computational Linguistics at the Universities of Saint-
Petersburg (Russia) and Tübingen (Germany). She is
currently a PhD student at the Institute of Cognitive Science,
University of Osnabrück. Her research interests include
formal ontologies, natural language semantics, and
information retrieval from texts.

Tonio Wandmacher studied Computational Linguistics,
Psychology and Computer Science (M.A.) in Tübingen and
Hong Kong. After his graduation in 2004 he enrolled in a
French-German PhD Programme and spent the first part at
the Université de Tours until 2006. He now works as a
research associate in the DFG-funded project "Adaptive
Ontologies on Extreme Markup Structures" at the Institute of
Cognitive Science, University of Osnabrück, where he also
pursues his PhD project.

Kai-Uwe Kühnberger studied Philosophy, Linguistics, and
Mathematics at the Universities of Tübingen, Stuttgart, and
Bloomington, Indiana. He received his PhD in Computational
Linguistics from the University of Tübingen in the year 2002.
He is currently assistant professor at the Institute of
Cognitive Science at the University of Osnabrück. The main
focus of his research covers non-classical forms of reasoning,
ontology design, neuro-symbolic integration, natural
language processing, and machine learning.

